Two forms of spiral-wave reentry in an ionic model of ischemic ventricular myocardium.

نویسندگان

  • Aoxiang Xu
  • Michael R. Guevara
چکیده

It is well known that there is considerable spatial inhomogeneity in the electrical properties of heart muscle, and that the many interventions that increase this initial degree of inhomogeneity all make it easier to induce certain cardiac arrhythmias. We consider here the specific example of myocardial ischemia, which greatly increases the electrical heterogeneity of ventricular tissue, and often triggers life-threatening cardiac arrhythmias such as ventricular tachycardia and ventricular fibrillation. There is growing evidence that spiral-wave activity underlies these reentrant arrhythmias. We thus investigate whether spiral waves might be induced in a realistic model of inhomogeneous ventricular myocardium. We first modify the Luo and Rudy [Circ. Res. 68, 1501-1526 (1991)] ionic model of cardiac ventricular muscle so as to obtain maintained spiral-wave activity in a two-dimensional homogeneous sheet of ventricular muscle. Regional ischemia is simulated by raising the external potassium concentration ([K(+)](o)) from its nominal value of 5.4 mM in a subsection of the sheet, thus creating a localized inhomogeneity. Spiral-wave activity is induced using a pacing protocol in which the pacing frequency is gradually increased. When [K(+)](o) is sufficiently high in the abnormal area (e.g., 20 mM), there is complete block of propagation of the action potential into that area, resulting in a free end or wave break as the activation wave front encounters the abnormal area. As pacing continues, the free end of the activation wave front traveling in the normal area increasingly separates or detaches from the border between normal and abnormal tissue, eventually resulting in the formation of a maintained spiral wave, whose core lies entirely within an area of normal tissue lying outside of the abnormal area ("type I" spiral wave). At lower [K(+)](o) (e.g., 10.5 mM) in the abnormal area, there is no longer complete block of propagation into the abnormal area; instead, there is partial entrance block into the abnormal area, as well as exit block out of that area. In this case, a different kind of spiral wave (transient "type II" spiral wave) can be evoked, whose induction involves retrograde propagation of the action potential through the abnormal area. The number of turns made by the type II spiral wave depends on several factors, including the level of [K(+)](o) within the abnormal area and its physical size. If the pacing protocol is changed by adding two additional stimuli, a type I spiral wave is instead produced at [K(+)](o)=10.5 mM. When pacing is continued beyond this point, apparently aperiodic multiple spiral-wave activity is seen during pacing. We discuss the relevance of our results for arrythmogenesis in both the ischemic and nonischemic heart. (c) 1998 American Institute of Physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spiral Waves in the Mathematical Models of Simulated Ischemia

Regional myocardial ischemia is a major factor promoting electrophysiological abnormalities leading to ventricular tachycardias (VTs)/fibrillations (VFs). The study was to use computer simulation method to determine the possible role of ischemic size and level in the mechanisms underlying reentrant activities and cardiac arrhythmias. The Noble98 mathematical model of ventricular cell was chosen...

متن کامل

A model for human ventricular tissue.

The experimental and clinical possibilities for studying cardiac arrhythmias in human ventricular myocardium are very limited. Therefore, the use of alternative methods such as computer simulations is of great importance. In this article we introduce a mathematical model of the action potential of human ventricular cells that, while including a high level of electrophysiological detail, is comp...

متن کامل

Recerca I Innovació a L'escola De Camins

Phase-2 reentry is a basic mechanism for the transition to VT and VF in the heart. It is thought to underly many causes of idiopathic ventricular arrhythmias as, for instance, those occurring in Brugada syndrome. Reentry is usually linked to heterogeneity in tissue repolarization. We study some circumstances under which a region of depolarized tissue can reexcite adjacent regions that exhibit s...

متن کامل

Computer simulation of the reentrant cardiac arrhythmias in ischemic myocardium.

Computer simulation was performed to determine how reentrant activity could occur due to the spatial heterogeneity in refractoriness induced by the regional ischemia. Two regional ischemic models were developed by decreasing the intracellular ATP concentration, reducing conductance of the inward Na+ current and increasing the extracellular K+ concentration on the two-dimensional sheet. Operator...

متن کامل

Effects of simulated ischemia on spiral wave stability.

Regional hyperkalemia during acute myocardial ischemia is a major factor promoting electrophysiological abnormalities leading to ventricular fibrillation (VF). However, steep action potential duration restitution, recently proposed to be a major determinant of VF, is typically decreased rather than increased by hyperkalemia and acute ischemia. To investigate this apparent contradiction, we simu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 1998